Algebra 2

7.1 Inverse Variation

Variations

- Direct Variation \qquad
- $\quad x \uparrow, y \uparrow$
- Inverse Variation \qquad
- $\quad x \uparrow, y \downarrow$
- $\quad a$ is the \qquad of variation
What type of variation is each of the following?
$x y=48$

$$
2 y=x
$$

$y=2 x+3$

$$
y=\frac{2}{x}
$$

Checking data for variation

1. Look at the \qquad
2. If y \qquad as x increases, check \qquad variation
3. If y \qquad as x increases, check \qquad variation
4. Plug each of the \qquad in one of the variation equations to find \qquad
5. If the a stays the \qquad , the data has that type of variation
What type of variation?

x	2	4	8
y	8	4	2

Solving Variations

1. Write the equation in \qquad stated.
2. "Varies" means" \qquad "
3. Plug in x and y to find \qquad
4. Plug in \qquad and the other \qquad and solve
y varies inversely as x. When $x=-3, y=8$. Write an equation relating x and y. Then find y when $x=3$.
\qquad
y varies inversely as x. When $x=5, y=-4$. Write an equation relating x and y. Then find y when $x=3$.

The time t (in hours) that it takes a group of roofers to roof a house varies inversely with the number n of roofers. It takes a group of 4 roofers 9 hours to roof the house. How long does it take 6 roofers to finish the house?

359 \#1-25 odds, 26, 31, 35, 39, 45, 47, 49 = 20

Algebra 2

7-02 Graphing Rational Functions

Rational Functions

- Functions written as a \qquad with x in the denominator
- $y=\frac{1}{x}$
- Shape called \qquad

General form

- $y=\frac{a}{x-h}+k$
- $\quad a \rightarrow$ \qquad vertically
- $h \rightarrow$ moves \qquad
- $k \rightarrow$ moves \qquad
How is $y=\frac{2}{x+3}+4$ transformed from $y=\frac{1}{x}$?

How to find asymptotes

- Vertical asymptote

1. Make the \qquad $=0$ and solve for \qquad

- Horizontal asymptote

1. Substitute a \qquad number for \qquad and \qquad

- Or

1. Find the degree of \qquad
2. Find the degree of \qquad (D)
a. If $\mathrm{N}<\mathrm{D}$, then \qquad
b. If $N=D$, then \qquad
c. If $\mathrm{N}>\mathrm{D}$, then

Find the asymptotes for $y=\frac{2 x}{3 x-6}$

Domain

- All x 's except for the \qquad asymptotes

Range

- All the y 's covered in the graph
- Usually all y's except for \qquad asymptote

1. Find the

Graph $y=\frac{2}{x+3}+4$ and state the domain and range

Rewrite $g(x)=\frac{2 x+5}{x+2}$ in the form $g(x)=\frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.

Rewrite $g(x)=\frac{5 x+6}{x+1}$ in the form $g(x)=\frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.

366 \#5, 9, 13, 17, 21, 25, 29, 31, 39, 41, 57, 59, 61, 63, $67=15$

Algebra 2

7-03 Multiplying and Dividing Rational Expressions

Simplified form

- Numerator and denominator can have no common

Steps to simplify

1. \qquad numerator and denominator
2. any common factors
Simplify
$\frac{x^{2}+11 x+18}{x^{3}+8} \quad \frac{2 x^{2}}{3 x^{2}-4 x}$

Multiplying Rational Expressions

1. \qquad numerators and denominators
2. \qquad across top and bottom
3. factors
$\frac{x^{2}+3 x-4}{x^{2}+4 x+4} \cdot \frac{2 x^{2}+4 x}{x^{2}-4 x+3}$ $\frac{x^{2}-3 x}{x-2} \cdot \frac{x^{2}+x-6}{x}$

Dividing Rational Expressions

1. Take \qquad of divisor
2.

$\frac{x^{2}-x-6}{x+4} \div\left(x^{2}-6 x+9\right) \quad \frac{x^{2}-x-6}{2 x^{4}-6 x^{3}} \div \frac{x+2}{4 x^{3}}$

Combined Operations

1. Do the first \qquad operations
2. Use that \qquad with the next operation $374 \# 1,5,7,9,11,13,15,17,19,23,25,27,29,31,33,43,45,47,49,55=20$

Algebra 2

7-04 Adding and Subtracting Rational Expressions

Adding and Subtracting

1. Need \qquad (LCD)
a. If LCD already present, add or subtract \qquad only
2. To get fractions with LCD
a. all denominators
b. LCD is the \qquad of the highest \qquad of each \qquad in either expression
c. Whatever you \qquad the denominator by, multiply the \qquad also
Find the least common multiple of $5 x$ and $5 x-10$.

Find the least common multiple of $2 x^{2}-18, x^{2}+x-12$
$\frac{15}{4 x}+\frac{5}{4 x} \quad \frac{5 x}{x+3}+\frac{15}{x+3}$
$\frac{12}{x^{2}+5 x-24}+\frac{3}{x-3}$
\qquad
$\frac{3}{x+4}-\frac{1}{x+6}$

Simplifying Complex Fractions

1. Fractions within \qquad
2. Follow \qquad (groups first)
3.

$\frac{\frac{1}{3 x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3 x-4}}$
$\frac{\frac{x}{3}-6}{10+\frac{4}{x}}$

Algebra 2

7-05 Solving Rational Equations

Solve Rational Equations

- Only when the \qquad is present!!!
- Method 1: \qquad both sides and \qquad multiply
- Method 2:

1. \qquad both sides by \qquad to remove fractions
2.
3. answers
$\frac{x}{2 x+7}=\frac{x-5}{x-1}$

$$
\frac{4}{2 x}=\frac{5}{x+6}
$$

$\frac{6 x}{x+4}+4=\frac{2 x+2}{x-1}$
$\frac{3}{2}+\frac{1}{x}=2$

1. \qquad the function
2. If any \qquad line touches the graph more than once, then the inverse is \qquad a function

Finding Inverse of Rational Functions

1. \qquad x and y
2. \qquad for y
$f(x)=\frac{2}{x-4}$. Determine whether the inverse of f is a function. Then find the inverse.

$f(x)=\frac{3}{x}-2$. Determine whether the inverse of f is a function. Then find the inverse.

$390 \# 1,5,11,13,15,17,19,21,23,25,27,29,35,37,39,57,59,61,63,65=20$

Algebra 2

7-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers.
7-01
Classify the following variations as direct, inverse, or neither.

1. $x y=16$
2. $x=\frac{y}{3}$

The variables x and y vary inversely. Use the given values to write an equation relating x and y. The find y when $x=10$.
3. $x=2, y=9$

7-02
Find the asymptotes of the given function.
5. $f(x)=\frac{10}{x-4}$
6. $g(x)=-\frac{1}{x+2}+3$

Graph the function.
7. $y=\frac{1}{x+1}+2$
9. $y=\frac{x+2}{x+1}$
8. $y=\frac{2}{x-1}$

7-03

Perform the indicated operation and simplify.
10. $\frac{2 x^{2}+12 x+10}{8 x^{2}+16 x-120}$
11. $\frac{x^{2}+8 x+15}{x^{2}-x-12} \cdot \frac{x-4}{x^{2}+4 x-5}$
12. $\frac{x^{2}-4 x-12}{x^{2}-9} \div \frac{x+2}{x^{2}-9 x+18}$

7-04
Find the least common multiple of the polynomials.
13. $10 x(x+2)(x-1)$ and $15 x(x+3)(x-1)$
14. $x^{2}+x-2$ and $x^{2}-x-6$

Perform the indicated operation and simplify.
15. $\frac{x}{x+3}-\frac{5 x+4}{x^{2}+3 x}$
16. $\frac{3 x}{6(x+1)}+\frac{9}{18(x+1)}$
17. Simplify the complex fraction.

$$
\frac{\frac{4}{x+1}}{\frac{5}{x+1}+\frac{3}{x^{2}+x}}
$$

7-05
Solve the equation. Check for extraneous solutions.
18. $\frac{2 x}{x^{2}-4}=\frac{5}{x-2}$
20. $\frac{3}{x}+\frac{4}{x+10}=\frac{5}{x+10}$
19. $\frac{2}{x+10}=\frac{5}{x+11}$
21. $\frac{2 x}{x+1}+\frac{3}{x+2}=\frac{5 x}{x+1}$
22. A factory will begin making chairs. The startup costs are $\$ 20,000$ for the machines to make the chairs. The materials and labor cost $\$ 15$ for each chair. Write an equation that gives the average cost per chair as a function of the number of chairs made. How many chairs will have to be made to have an average cost of $\$ 30$?
\qquad

Answers

1. Inverse
2. Direct
3. $y=\frac{18}{x} ; y=\frac{9}{5}$
4. $y=-\frac{75}{x} ; y=-\frac{15}{2}$
5. VA: $x=4 ;$ HA: $y=0$
6. VA: $x=-2 ;$ HA: $y=3$
7.

8.

10. $\frac{x+1}{4(x-3)}$
11. $\frac{1}{x-1}$
12. $\frac{(x-6)^{2}}{x+3}$
13. $30 x(x-1)(x+2)(x+3)$
14. $(x+2)(x-1)(x-3)$
15. $\frac{x^{2}-5 x-4}{x(x+3)}$
16. $\frac{1}{2}$
17. $\frac{4 x}{5 x+3}$
18. $-\frac{10}{3}$
19. $-\frac{28}{3}$
20. -15
21. $\frac{-1 \pm \sqrt{5}}{2}$
22. $C=\frac{15 x+20000}{x} ; 1,333$ chairs

